Session 9:
Overset and 6-DOF Simulations

) N3D
@ http://fun3d.larc.nasa.gov @ Fuly Unstructured Navier-Stokes

Learning Goals

« What this will teach you
— Static and dynamic simulations using overset meshes (general)
— Using FUN3D with (lib)SUGGAR++ for dynamic simulations
— Setup for overset, 6DOF simulations
* What you will not learn

— Setup and use of SUGGAR++ (stand-alone code; covered in another
session)

* What should you already know
— Basic time-accurate and dynamic-mesh solver operation and control

@ http://fun3d.larc.nasa.gov @ |\!3D _
ully Unstructured Navier-Stokes

Part | — Overset Simulations

) N3D
@ http://fun3d.larc.nasa.gov @ Fuly Unstructured Navier-Stokes

Setting

« Background

— Many (most?) moving-body problems of interest involve large
relative motion - rotorcraft, store separation are prime examples

» Deforming meshes can accommodate only limited relative motion
before mesh degenerates

« Single rigid mesh can accommodate only one body, and not
relative motion

» Use overset grids to overcome these limitations - not to overcome
complex geometry per se — that's why we use unstructured grids!

« Compatibility
— FUNS3D requires both DiRTlib and SUGGAR++ codes from PSU
— Grid formats: VGRID, AFLR3, FieldView (FV)

« Status
— Bodies in contact / emerging bodies - no near-term plans

) N3D
@ http://fun3d.larc.nasa.gov @ Fully Unsiructured Navier-Siokes

Overset Mesh Simulations — General (1/4)

« Configuring FUN3D

— Compile / install DiRTlib and SUGGAR; available scripts (download from
FUN3D website) make it “easy”

— When configuring FUN3D, use --with-dirtlib=/path/to/
dirtlib and --with-suggar=/path/to/suggar

— FUNS3D will expect to find the following libraries in those locations:

* libdirt.a, libdirt mpich.a and libp3d.a (these may be
soft links to the actual serial and mpi builds of DiRTIib)

* libsuggar.a and libsuggar mpi.a (may be soft links)

 Scripts do this automatically — they put links to all archives in one
spot, so /path/to/dirtlib = /path/to/suggar

 Grids (remember z is “up” for FUN3D)

— A composite overset grid is comprised of 2 or more component grids -
independently generated - but with similar cell sizes in the fringe areas

— SUGGAR++ is used to create the composite mesh

@ http://fun3d.larc.nasa.gov @ |\!3D _
ully Unstructured Navier-Stokes

Overset Mesh Simulations — General (2/4)

« Boundary conditions:

— SUGGAR++ needs BC info for each component grid - set either via the
SUGGAR++ input XML file OR an auxiliary file for each component grid;
SUGGAR++ will output this auxiliary file for the composite mesh

— FUNS3D also needs BC info for the composite grid; depending on grid
type, file names / content may differ slightly between FUN3D / SUGGAR

VGRID grid FV grid AFLR3 grid
FUN3D grid.mapbc grid.mapbc grid.mapbc
(standard VGRID file) (not same as VGRID) (not same as VGRID)
SUGGAR++ grid.mapbc grid.ext.suggar_mapbc | grid.ext.suggar_mapbc

(standard VGRID file)

(not same as VGRID)

(not same as VGRID)

— “ext” is the FUN3D grid extension, e.g.: grid.fvgrid _fmt, grid.r8.ugrid
— AFLR3 / FV grids: suggar_mapbc file has extra column; FUN3D ignores

3

1 5000 Box

! number of boundaries (patches)

farfield ! patch_index, fun3d bc, family name, suggar_bc
2 4000 Wing_ Surf solid
3 -1 Wing FarFld overlap

@ http://fun3d.larc.nasa.gov

Fully Unstructured Navier-Stokes

Overset Mesh Simulations — General (3/4)

« Boundary conditions (cont):

— set BC type to -1 in component-grid “mapbc” files for boundaries that
are set via interpolation from another mesh

Grid Courtesy Eric Lynch, GA Tech

llllll

|||||||||||
llllllllllllllllllllllllllllllll
llllllllllllllllllllllllllllllll

@ http://fun3d.larc.nasa.gov @ I\g.?u?mwnmm:

Overset Mesh Simulations — General (4/4)

* Create an XML input file for SUGGAR++

— Basic SUGGAR++ setup covered in another session; however must
show some XML here to show certain FUN3D-specific points

— Set the name for the <composite grid> and
<domain_connectivity> files to the name of your FUN3D project

— Can mix and match component grid types (VGRID, FV, AFLR) and
select one of the types for the composite grid - but recall VGRID only
supports tetrahedra

 Run SUGGAR++ and make sure it all works as expected. You should
now have a [project] .dci file; this domain connectivity information
file contains all necessary overset data for solver interpolation between
the nonmoving component meshes

* Good idea to use the “gviz” tool from PSU to view composite mesh
assembly, holes points, fringe points, etc.

@ http://fun3d.larc.nasa.gov @ I\!ugu?mwnmm:

Overset Mesh Simulations — Static (1/2)

* Running FUN3D with static overset meshes:

— Add --overset to any other CLOs you may have and run as usual

— In screen output, should see:
Reading DCI data: ([project].dci)
Loading of dci file header took Wall ..
Opening filename: ([project] .g2l) (repeated nproc times !)
Loading of dci file took Wall Clock time = 5.324230 seconds
Using DiRTlib version 1.40 for overset capability

DiRT1lib developed by Ralph Noack, Penn State University Applied Research
Laboratory

— Followed by the usual FUN3D output, ending with Done.

— If you request visualization output data for an overset case, “iblank”
data will automatically be output to allow blanking of the hole / out
points for correct visualization of the solution / grid in Tecplot

@ http://fun3d.larc.nasa.gov @ I\!ugu?mwnmm:

with iblank

Fully Unstructured Navier-Stokes

N3D

Overset Mesh Simulations — Static (2/2)

without iblank

FRH B H

HH FES] -

R R

tH e H

g G

H e

tH R

H m.m.%&w S

A SESES A
D W W W LW
g e) o (5
(= l~ e el

/[fun3d.larc.nasa.gov

http

Overset Mesh Simulations — Dynamic (1/4)

« SUGGAR++ setup
— Starting with a basic SUGGAR++ XML file:

 Add <dynamic/> to <body> elements that are to move, e.q.
<body name="wing'">
<volume grid name="wing" style="vgrid set" filename="wing"/>
</body>
<body name="store'">
<dynamic/>
<volume grid name="store" style="vgrid set" filename="store"/>
</body>

* Note: better to use a self-terminated <dynamic/> rather than
<dynamic> .. </dynamic> since if there are any <transform>
elements in between, SUGGAR++ won’t apply them unless explicitly
told to

— Use SUGGAR++ to generate the initial (t = 0) composite grid; let’s
assume you called the XML file Input.xml 0

@ http://fun3d.larc.nasa.gov @ |\!3D _
ully Unstructured Navier-Stokes

Overset Mesh Simulations — Dynamic (2/4)
In the FUN3D moving body. input file

— Define the bodies and specify motion as usual; boundary numbers
correspond to those in the composite mesh mapbc file, accounting for
any boundary lumping that may be selected at run time

— use the component body names from the Input.xml O file
— Add name of the xml file used to generate the t = 0 composite mesh:

&composite overset mesh
input xml file = 'Input.xml 0'

/
Running FUN3D

— Use CLOs --overset --moving grid --dci on_ the fly

— The last tells FUN3D to call libSUGGAR++ routines to compute new
overset data when the grids are moved; if this CLO is not present,
solver will try to read the corresponding dci file from disk

@ http://fun3d.larc.nasa.gov @ I\!u?u?mmnmwm

Overset Mesh Simulations — Dynamic (3/4)

* Running FUN3D (cont)

— Note: for dynamic meshes, the component grids (and any
“suggar_mapbc” files) must be available (can be soft linked) in the
FUNS3D run directory, in addition to the t = 0 composite-grid files

— When using --dci_on_the_ fly, must specify one additional
processor for SUGGAR++ (in future, hope to be able to use more)

« The first processor gets assigned the SUGGAR++ task

» This processor must have enough memory for entire overset problem
(same as needed for SUGGAR++ alone)

— Other overset-grid CLOs
--dci_period N periodic motion over N steps (default 0)
--dci_freq N compute dci data only every Nt step (1)

--reuse_existing dci use existing files if present, even with
--dci on the fly (.F.)
--grid motion and dci only create dcifiles; no flow solve (.F.)

@ http://fun3d.larc.nasa.gov @ |\!3D _
ully Unstructured Navier-Stokes

Overset Mesh Simulations — Dynamic (4/4)

 As always, can use animation to verify; these were done ex post facto,
but GVIZ has motion replay options too

FUN3D Training Worksho
@ http://fun3d.larc.nasa.gov July 27-28g 2010 ’ @'\fuﬁ.?,,fwmmn 4

Part |l — 6-DOF Simulations

) N3D
@ http://fun3d.larc.nasa.gov @ Fuly Unstructured Navier-Stokes

Setting

« Background

— FUNBS3D is currently coupled to the 6-DOF library originally developed
by the Univ. of Alabama at Birmingham and Mississippi State Univ.
under the DOD PET program

« Compatibility
— Requires limited-availability library (available only to Government
Organizations and Govt. Contractors working on a DOD contract)
— Requires overset grids (DiRTlib and SUGGAR++)
 Status

— 6-DOF capability in place but exercised very little to date - one or
two validation cases - we simply are not working tasks which need
6-DOF (rotorcraft utilizes a very different 6-DOF capability)

— Use Version 11.3 or higher - a couple of significant fixes for 6-DOF

— Version 11.3 has a minor bug in 6-DOF module for the case where
the grid is not scaled 1:1 with the full-sized configuration; fixed for
vi1.4

) N3D
@ http://fun3d.larc.nasa.gov @ Fully Unsiructured Navier-Siokes

UAB 6-DOF Libraries (1/2)

* Originally developed by the Univ. of Alabama at Birmingham and
Mississippi State Univ. under the DOD PET program

« Maintained and distributed by Nathan Prewitt Nathan.C.Prewitt@usace.army.mil
» General attributes

— Multi body; hierarchical body definition

— Allows for constrained motion (not yet implemented in FUN3D)

— Allows for prescribed motion (e.g. specified motion of fins - not yet
implemented in FUN3D)

— Runge-Kutta 4t order time integration; quaternion based
— Works with dimensional data
— Rigid bodies only

 FUN3D user does not directly interact with the 6-DOF library, except to
compile it and link against FUN3D; 6-DOF specific input primarily via
FUN3D’s moving body.input file

@ http://fun3d.larc.nasa.gov @ |\!3D _
ully Unstructured Navier-Stokes

UAB 6-DOF Libraries (2/2)

« Configuring FUN3D

— Compile the 6DOF libraries, following the README that comes with the
package. Top-level directory is called 6DOF (below that will be EXP, HT
and Motion directories; you need to compile source via makefiles in
each directory, as per the README file)

— When configuring FUN3D, use --with-sixdof=/path/to/6DOF

— FUNS3D will expect to find the following libraries in those locations:
« 6DOF/Motion/lib/libmo.a
« 6DOF/HT/1lib/libht.a
* 6DOF/EXP/lib/libexp.a

— Recall that overset grids are required, so need --with-dirtlib=/
path/to/dirtlib and --with-suggar=/path/to/suggar too

* Input for 6-DOF is a combination of nondimensional data (basic flow solver
input via fun3d.nml: e.g. time step) and dimensional (e.g. mass and
inertial properties via moving body.input)

) N3D
@ http://fun3d.larc.nasa.gov @ Fully Unsiructured Navier-Siokes

moving body.input File (1/2)

« 6-DOF obviously has moving bodies so as usual need to group boundaries
into moving bodies and since this is overset, need to set the initial XML file:

&body definitions

n_moving bodies = 1, ! number of bodies in motion

body name(l) = 'store', ! name must be in quotes

n_defining bndry(l) = 3, ! number of boundaries that define this body

defining bndry(1l,1) = 5, ! index 1: boundry number index 2: body number

defining bndry(2,1) 6, ! index 1: boundry number index 2: body number

defining bndry(3,1) = 7, ! index 1: boundry number index 2: body number

mesh movement(l) = 'rigid', ! 6DOF likely incompatible with deforming meshes (currently)

motion driver(l) = 'é6dof’ ! 6DOF is in the driver’s seat

dimensional output = .true. ! moving body history files will contain dimensional data

body frame forces = .true. ! moving body F/M history output relative to body frame

ref velocity = 1011.7, ! sound speed ft/sec at 26k ft - to dimensionalize for 6DOF

ref density = 0.00102, ! slug/ft3 at 26k ft - to dimensionalize for 6DOF

ref length = 1.00 ! actually the length scale L*_ /L, (1 unit in grid = 1 ft)
/ ! bug in v11.3: grid MUST be scaled 1:1; fixed in v11.4
&composite_ overset mesh

input xml file = 'Input.xml O' ! same as used to create composite mesh

/

@ http://fun3d.larc.nasa.gov @ I\g.gu?mmmwm

moving body.input File (2/2)

« Additional namelist for specifying body mass, inertia, external forces, etc
&sixdof motion
mass (1) 62.1118, ! body mass (slugs), body 1
cg_x(1) = 1.483333333333, ! x-location of CG in body coordinates, body 1
cg_y(l) = 10.83333333333, ! y-location of CG in body coordinates

cg_z(1l) = -2.95000000000, ! z-location of CG in body coordinates
i xx(1) = 20.0 ! Ixx momment of inertia, body 1
i yy(1) = 360.0, ! Tyy momment of inertia
i zz(1l) = 360.0, ! Izz momment of inertia
i xy(1) = 0.0, ! Ixy product of inertia
i xz(1) = 0.0, ! Ixz product of inertia
i yz(1) = 0.0, ! ITyz product of inertia
body lin vel(:,1) = 0.0, 0.0, 0.0, ! initial velocity (x,y,z components), body 1
body ang vel(:,1) = 0.0, 0.0, 0.0, ! initial ang. velocity (p,q,r components) of body 1
euler ang(1l,1) = 0.0, ! initial euler angle - yaw, body 1
euler ang(2,1) = 0.0, ! initial euler angle - pitch
euler_ang(3,1) 0.0, ! initial euler angle - roll
gravity dir(:) = 0.0, 0.0, -1.0 ! x,yv,z components of gravity vector (z “up” in fun3d)
gravity mag = 32.2, ! gravitational constant
n_extforce(l) = 2, ! no. of external forces applied, body 1
file extforce(l,1) = 'force fwd bodyl.dat' ! file with forward ejector force vs time
file extforce(2,1) = 'force_ aft bodyl.dat’ ! file with aft ejector force vs time
/ ! similar provisions for external moments

) N3D
@ http://fun3d.larc.nasa.gov @ Fuly Unstructured Navier-Stokes

External Force/Moment Specification

« Rudimentary provision for imposing ejector forces
* Input is dimensional, consistent with units used in moving body. input
* Analogous format for imposed moment specification

« Example

! Body Name ! must be consistent with name in moving body.input
'store’

! Force Name

'fwd ejector’

! Coordinate System (0 inertial, >0 body frame)

1

! Number of Data Points to Read

3

! Repeat Flag (0...last values remain forever; 1l...repeat data)

0

! Time Fx Fy Fz Xloc Yloc Zloc
0.0 0.0 0.0 -2400.0 0.893333333 10.833333333 -2.12
0.055 0.0 0.0 -2400.0 0.893333333 10.833333333 -2.12
0.05500000001 0.0 0.0 0.0 0.893333333 10.833333333 -2.12

) N3D
@ http://fun3d.larc.nasa.gov @ Fully Unsiructured Navier-Siokes

Things To Look For In Screen Output (1/2)

« 6DOF info section starts with some useless info (from user point of view)

6DOF Initialization:

Nondimesionalization factors for 6DOF equations:
(6DOF force/moment nondim. differs from aerodynamics)

inertia factor = 0.98039216E+03
mass_factor 0.98039216E+03
gravity factor 0.97700436E-06
length factor 0.10000000E+01
velocity factor = 0.98843531E-03
time factor 0.10117000E+04
force factor 0.95784741E-03
moment factor = 0.95784741E-03
body 1

aero_force factor = 0.97295271E-03

0.58377163E-03
0.58377163E-03
0.58377163E-03

aero_xmoment_factor

aero_ymoment factor

aero_zmoment_factor

) N3D
@ http://fun3d.larc.nasa.gov @ Fully Unsiructured Navier-Siokes

Things To Look For In Screen Output (2/2)

« After which the user input is echoed:

Gravity Magnitude and Direction: 0.322000E+02 0.000000E+00 0.000000E+00
-0.100000E+01

0.0000000E+00

Dimensional 6DOF data for Body 1 Time

Body Name: store

Mass: 0.621118E+02

CG Location: 0.148333E+01 0.108333E+02 -0.295000E+01
Ixx,Iyy,Izz: 0.200000E+02 0.360000E+03 0.360000E+03
Ixy,Ixz,Iyz: 0.000000E+00 0.000000E+00 0.000000E+00
Linear Vel: 0.000000E+00 0.000000E+00 0.000000E+00
Angular Vel: 0.000000E+00 0.000000E+00 0.000000E+00
Yaw,Pitch,Roll: 0.000000E+00 0.000000E+00 0.000000E+00

External forces for Body 1 imposed from the file(s)
force fwd bodyl.dat
force aft bodyl.dat
* Note that CG location output here is in the body-frame, so generally won'’t
differ at restart; however velocities and angular orientation are current
values relative to the inertial frame, so will change at restart

) N3D
@ http://fun3d.larc.nasa.gov @ Fully Unsiructured Navier-Siokes

Output Files

* In addition to the usual output files, for moving-grids there are 4 ASCII
Tecplot files for each body; these are the primary 6-DOF data of interest

— PositionBody N.dat tracks linear (x,y,z) and angular (yaw, pitch,

roll) displacement of the CG

— VelocityBody_ N.dat tracks linear (V,,V,,V,) and angular

(O O Q) velocity of the CG
x 9SSy s=8E,

AeroForceMomentBody N.dat tracks force components (F,,F,, F,)
and moment components (M,,M,,M,)

ExternalForceMomentBody N.dat tracks applied force F/M (6-
DOF only)

Data in all files are nondimensional by default (e.g. “forces” are
actually force coefficients); moving body.input file has option to
supply dimensional reference values such that this data is output in
dimensional form (see previous example moving_body.input)

Forces are by default given in the inertial reference system; option to
output forces in the body-fixed system (see previous example)

@ http://fun3d.larc.nasa.gov @ |\!3D _
ully Unstructured Navier-Stokes

Sample Case - Wing/Pylon/Store (1/6)

« Only 6-DOF case computed to date is for the “classic” 1990 data set from
the AEDC Aerodynamic Wind Tunnel (4T)

Mach 0.95 (data for Mach 1.2 also available)

Grid used was one created for a cell-centered solver, and so is actually
inappropriate for FUN3D; also relatively coarse at 2.3M nodes

Grid includes a portion of the sting used in the tunnel, but sting
contributions to forces/moments ignored (next slide)

Tunnel aerodynamic F/M data taken in a quasi-static manner
Trajectory based on full scale, 26k feet altitude, with ejector forces

Example moving body.input file shown in previous slides
correspond to this case, so won't repeat here

Nondimensional time step of 5.0585 corresponds to 0.005 seconds;
time-accurate solution started from converged steady-state solution

Large number of orphans for first 15 time steps or so (t ~ 0.075 sec);
max 1544 orphans at 4t time step (t = 0.02 sec)

) N3D
@ http://fun3d.larc.nasa.gov @ Fully Unsiructured Navier-Siokes

Sample Case - Wing/Pylon/Store (2/6)

« “Sting” was not metric in experimental force measurement; forces on
these boundaries are excluded by having a file called
remove boundaries from force totals:

File for turning off the contribution of selected boundaries
No. boundaries to turn off (be careful with boundary lumping)
6

Boundary to turn off

oo b WDNR

* Run Steady state case with CLO: --overset
* Run 6-DOF restart from steady state with CLO'’s:

--six dof --dci _on the fly --overset --moving grid
--temporal err control 0.0l --animation freq +5

) N3D
@ http://fun3d.larc.nasa.gov @ Fuly Unstructured Navier-Stokes

Sample Case - Wing/Pylon/Store (2/6)

* SUGGAR++ XML file Input.xml 0 (SUGGAR++ covered elsewhere)

<global>
<donor_quality value="0.9"/>
<symmetry plane axis="Y"/>
<minimize overlap keep inner fringe="yes"/>
<output>
<unstructured grid style="unsorted vgrid set” filename="wingstore"/>
<domain connectivity style="unformatted gen drt pairs" filename="wingstore.dci"/>
</output>
<body name="wingstore”>
<body name="wing">
<transform>
<scale value= '1.6666666666667'/>
</transform>
<volume grid name="wing" style="vgrid set" filename="zx03wing"/>
</body>
<body name="store">
<transform>
<scale value= '1.6666666666667'/>
</transform>
<dynamic/>
<volume grid name="store" style="vgrid set" filename="zx03bomb">
<specified donor_suitability function value="2.e-20"/>
</volume grid>
</body>
</body>

</global>
http://fun3d.larc.nasa.gov I\g,gu?mmm,MS

CG Position (ft)

o

(3]

10

Sample Case - Wing/Pylon/Store (3/6)

- Store Trajectory: CG position and velocity from PositionBody 1.dat
and VelocityBody 1.dat

CGx, CFD

[——— CGy
B ———— CGz
i o CGx, Exp

o CGy
i o CGz
\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\
0 005 01 015 0.2 0.25 0.3 0.35 04 0.45

Time (sec)

@ http://fun3d.larc.nasa.gov

25

- N
T =)
L T I T T T I T T T I T T T I T T T

-
o

CG Velocity (ft/sec)
(3,

o

005 01 015 0.2 025 0.3 0.35 04 0.45
Time (sec)

Fully Unstructured Navier-Stokes

Angular Orientation (deg)

20

15

10

-10

Sample Case - Wing/Pylon/Store (4/6)

« Store Trajectory: angular orientation and angular rates from
PositionBody 1l.dat and VelocityBody 1.dat; low value of |,
presumably makes roll more sensitive to force/moment inaccuracies

0

0.05 0.1
Time (sec)

@ http://fun3d.larc.nasa.gov

015 0.2 0.25 03 035 04 0.45

Angular Rate (rad/sec)

2 T I T I T I T I T I T I T I T I T

1} 7 -
B p
i p
[r
- o p Exp oo°°°01>
i o q i
- o r]

_2 7\ L1l I | I | I | I | I | I | I | I L1l \A
0 005 01 015 0.2 025 0.3 035 0.4 0.45

Time (sec)

Fully Unstructured Navier-Stokes

Force Coefficient

-1.5

Sample Case - Wing/Pylon/Store (5/6)

« Store Aerodynamics: force and moment coefficients - nondimensionalized
from dimensional data in AeroForceMomentBodyl .dat

5\\\\'\\\\'\\\\\6\

0

0.05 0.1

015 0.2 0.25 0.3

Time (sec)

@ http://fun3d.larc.nasa.gov

04 045

Moment Coefficient

25

-2.5

[T T T T I 1T I 1T I 1T I 1T I 1T I 1T I 1T I T

= MxCFD
- My .
’“°°o°° Mz -
B S o Mx Exp]
= ° My =
- o Mz]
,'--':: ------------ ::'s,---..---.-III-.----?:T
~ S $
- I'OO o]
- 00000000000 1
[08803’
- <a

~ 50°
WUU 5 .
- uuuuvoooooooo -
:\ | | | I |1 | | I |1 | | I |1 | | I |1 | | I |1 | | I |1 | | I |1 | | I | | | \4
0 005 01 015 0.2 0.25 0.3 0.35 04 0.45

Time (sec)

Fully Unstructured Navier-Stokes

Sample Case - Wing/Pylon/Store (6/6)

* Colorful Fluid Dynamics: pressure coefficient

.

FUNS3D Training Workshop
http://fun3d.larc.nasa.gov July 27-28, 2010 I\fuﬁg’wwm’mS

31

List of Key Input/Output Files

* Beyond basics like fun3d.nml, [project] hist. tec, etc.:
* Input

— moving body.input (any moving body case)

— Input.xml 0 (dynamic overset; no standard name)

— [project] .dci (any overset case)

— force fwd bodyl.dat (optional, 6DOF only, no standard name)
* Output

— PositionBody N.dat (any moving body case)

— VelocityBody N.dat (any moving body case)

— AeroForceMomentBody N.dat (any moving body case)

— ExternalForceMomentBody N.dat (6DOF only)

) N3D
@ http://fun3d.larc.nasa.gov @ Fully Unsiructured Navier-Siokes

FAQ’s

« Underutilized capability, so not many “frequently” asked questions...
 How long does it take?

— Currently (July 2010), the 2.3 million node Wing/Store/Pylon
simulation (starting from a steady-state solution) takes
approximately 2 hrs on 80(+1) processors of a 3.0 GHz P4 Dual
Core 4GB GigE cluster (92 time steps using temporal_err_control
0.01 with max 50 subiterations); note that this case is small
enough that a single processor for SUGGAR++ is not an
impediment - not true as problem size increases

« Why don'’t | get any DCI files output from a 6-DOF case like | do from
other overset, moving-grid cases?

— 6-DOF cases are assumed to be non-periodic, so there would
seem to be no need to reuse DCI data, hence no need to output
them and waste file space - output can be turned on by altering a
flag in the code if desired

) N3D
@ http://fun3d.larc.nasa.gov @ Fully Unsiructured Navier-Siokes

What We Learned

* How to set up and run static and dynamic overset meshes in FUN3D

— To fully utilize, requires knowledge of SUGGAR++ - covered in
another session

 6-DOF simulations

— Modest amount of additional input required beyond that required
for moving overset case with forced/specified motion

— Reluctant to call this capability “ready for prime time” based on
one or two results - but very willing to work with users to iron out
problems or add needed capabilities

@ http://fun3d.larc.nasa.gov @ |\!3D _
ully Unstructured Navier-Stokes

